A Simulation Method of Two-Dimensional Sea-Surface Current Field for Trajectory Crossing Spaceborne SAR

Author:

Li Yan,Chong Jinsong,Li Zongze

Abstract

The trajectory-crossing method is an important and effective method for spaceborne SAR (synthetic aperture radar) to detect a two-dimensional current field. However, in practical applications, there are few spaceborne SAR data that meet the requirements of close acquisition time and overlapping trajectories, which makes it difficult to comprehensively analyze the impact of different systems and environmental parameters on current measurement results from real data processing. With the proposal of a SAR constellation plan in the future, the data resources will be constantly enriched, and the trajectory-crossing method will be widely used. It is, thus, necessary to lay some theoretical foundation at present. A two-dimensional sea-surface-current-field simulation method for trajectory crossing spaceborne SAR is proposed in this paper. Based on the principles of the trajectory-crossing method, the proposed method can realize the simulation of two-dimensional sea-surface-current field under given spaceborne SAR system and environmental parameters. In this paper, the simulation process of this method is given, and the simulation experiment is performed. Compared with the current measurement results of SAR data, the simulation experiment shows that the current velocity error is less than 0.03 m/s and the direction error is less than 10 degrees, which proves the reliability of the proposed simulation method. The proposed method lays a foundation for analyzing the influence of various parameters in the application of the trajectory-crossing method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3