Synthesis of Nitrogen-Doped Graphene on Copper Nanowires for Efficient Thermal Conductivity and Stability by Using Conventional Thermal Chemical Vapor Deposition

Author:

Park MinjeongORCID,Ahn Seul-Ki,Hwang Sookhyun,Park Seongjun,Kim Seonpil,Jeon Minhyon

Abstract

Cu nanowires (NWs) possess remarkable potential a slow-cost heat transfer material in modern electronic devices. However, Cu NWs with high aspect ratios undergo surface oxidation, resulting in performance degradation. A growth temperature of approximately <1000 °C is required for preventing the changing of Cu NW morphology by the melting of Cu NWs at over 1000 °C. In addition, nitrogen (N)-doped carbon materials coated on Cu NWs need the formation hindrance of oxides and high thermal conductivity of Cu NWs. Therefore, we investigated the N-doped graphene-coated Cu NWs (NG/Cu NWs) to enhance both the thermal conductivity and oxidation stability of Cu NWs. The Cu NWs were synthesized through an aqueous method, and ethylenediamine with an amine group induced the isotropic growth of Cu to produce Cu NWs. At that time, the amine group could be used as a growth source for the N-doped graphene on Cu NWs. To grow an N-doped graphene without changing the morphology of Cu NWs, we report a double-zone growth process at a low growth temperature of approximately 600 °C. Thermal-interface material measurements were conducted on the NG/Cu NWs to confirm their applicability as heat transfer materials. Our results show that the synthesis technology of N-doped graphene on Cu NWs could promote future research and applications of thermal interface materials in air-stable flexible electronic devices.

Funder

Agency for Defense Development

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3