Abstract
The eco-friendly vegetable liquid is increasingly used because of the growing demand for environmentally friendly dielectric liquid. A vegetable liquid/fullerene nanofluid was fabricated via ultrasonic processing with good dispersion of the fullerene nanoparticles. It was observed that a small amount of fullerene (~100 mg/L) can significantly improve the electrical properties of vegetable insulating liquid (dissipation factor decreased by 20.1%, volume resistivity increased by 23.3%, and Alternating Current (AC) dielectric breakdown strength increased by 8.6%). Meanwhile, the trace amount of fullerene is also able to improve the electrical performances (i.e., dissipation factor and electrical resistivity) of the vegetable nanofluid under harsh conditions of long-term thermal aging compared with the blank contrast. The reduced acid values (25%) and dissolved decomposition gases (58.2% for hydrogen) in the aged vegetable nanofluid indicate the inhibition of molecule decomposition of vegetable liquid with fullerene. The improved electrical performances and thermal resistance of the vegetable nanofluid contribute to the electron affinity of fullerene proved by calculation of electron density distribution on the surface. The thermogravimetric analysis of the nanofluid under different atmospheres interprets that the oxygen absorbed inevitably in the fullerene contributes to the performance deterioration of the nanofluids during the initial aging. This work provides a potential method towards eco-friendly dielectric liquid with great electrical performances for harsh environments.
Funder
National Natural Science Foundation of China
the Science and Technology Project of SGCC
Subject
General Materials Science,General Chemical Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献