Design of Morphology-Controllable ZnO Nanorods/Nanopariticles Composite for Enhanced Performance of Dye-Sensitized Solar Cells

Author:

Wang Dongting,Zhang Yuting,Su Meng,Xu Ting,Yang Haizhou,Bi Shiqing,Zhang Xianxi,Fang Yuzhen,Zhao Jinsheng

Abstract

A facile one-pot approach was developed for the synthesis of ZnO nanorods (NRs)/nanoparticles (NPs) architectures with controllable morphologies. The concrete state of existence of NPs and NRs could rationally be controlled through reaction temperature manipulation, i.e., reactions occured at 120, 140, 160, and 180 °C without stirring resulted in orderly aligned NRs, disordered but connected NRs/NPs, and relatively dispersed NRs/NPs with different sizes and lengths, respectively. The as-obained ZnO nanostructures were then applied to construct photoanodes of dye-sensitized solar cells, and the thicknesses of the resultant films were controlled for performance optimization. Under an optimized condition (i.e., with a film thickness of 14.7 µm), the device fabricated with the material synthesized at 160 °C exhibited the highest conversion efficiency of 4.30% with an elevated current density of 14.50 mA·cm−2 and an open circuit voltage of 0.567 V. The enhanced performance could be attributed to the coordination effects of the significantly enhanced dye absorption capability arising from the introduced NPs and the intrinsic fast electron transport property of NRs as confirmed by electrochemical impedance spectroscopy (EIS) and ultraviolet–visible (UV−vis) absorption.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3