Research on the Influence of Small-Scale Terrain on Precipitation

Author:

Gu Wenya,Zhu Xiaochen,Meng Xiangrui,Qiu Xinfa

Abstract

Terrain plays an important role in the formation, development and distribution of local precipitation and is a major factor leading to locally abnormal weather in weather systems. Although small-scale topography has little influence on the spatial distribution of precipitation, it interferes with precipitation fitting. Due to the arbitrary combination of small, medium and large-scale terrain, complex terrain distribution is formed, and small-scale terrain cannot be clearly defined and removed. Based on the idea of bidimensional empirical mode decomposition (BEMD), this paper extracts small-scale terrain data layer by layer to smooth the terrain and constructs a macroterrain model for different scales in Central China. Based on the precipitation distribution model using multiple regression, precipitation models (B0, B1, B2 and B3) of different scales are constructed. The 18-year monthly average precipitation data of each station are compared with the precipitation simulation results under different scales of terrain and TRMM precipitation data, and the influence of different levels of small-scale terrain on the precipitation distribution is analysed. The results show that (1) in Central China, the accuracy of model B2 is much higher than that of TRMM model A and monthly precipitation model B0. The comprehensive evaluation indexes are increased by 3.31% and 1.92%, respectively. (2) The influence of different levels of small-scale terrain on the precipitation distribution is different. The first- and second-order small-scale terrain has interference effects on precipitation fitting, and the third-order small-scale terrain has an enhancement effect on precipitation. However, the effect of small-scale topography on the precipitation distribution is generally reflected as interference.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3