Nighttime Image Stitching Method Based on Image Decomposition Enhancement

Author:

Yan Mengying1,Qin Danyang12ORCID,Zhang Gengxin1,Tang Huapeng1,Ma Lin3ORCID

Affiliation:

1. Department of Electronic Engineering, Heilongjiang University, Harbin 150080, China

2. National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

3. Department of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China

Abstract

Image stitching technology realizes alignment and fusion of a series of images with common pixel areas taken from different viewpoints of the same scene to produce a wide field of view panoramic image with natural structure. The night environment is one of the important scenes of human life, and the night image stitching technology has more urgent practical significance in the fields of security monitoring and intelligent driving at night. Due to the influence of artificial light sources at night, the brightness of the image is unevenly distributed and there are a large number of dark light areas, but often these dark light areas have rich structural information. The structural features hidden in the darkness are difficult to extract, resulting in ghosting and misalignment when stitching, which makes it difficult to meet the practical application requirements. Therefore, a nighttime image stitching method based on image decomposition enhancement is proposed to address the problem of insufficient line feature extraction in the stitching process of nighttime images. The proposed algorithm performs luminance enhancement on the structural layer, smoothes the nighttime image noise using a denoising algorithm on the texture layer, and finally complements the texture of the fused image by an edge enhancement algorithm. The experimental results show that the proposed algorithm improves the image quality in terms of information entropy, contrast, and noise suppression compared with other algorithms. Moreover, the proposed algorithm extracts the most line features from the processed nighttime images, which is more helpful for the stitching of nighttime images.

Funder

Open Research Fund of National Mobile Communications Research Laboratory, Southeast University

National Natural Science Foundation of China

Outstanding Youth Program of Natural Science Foundation of Heilongjiang Province

Fundamental Scientific Research Funds of Heilongjiang Province

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3