Generating Datasets for Real-Time Scheduling on 5G New Radio

Author:

Jin Xi123ORCID,Chai Haoxuan1234,Xia Changqing123,Xu Chi123ORCID

Affiliation:

1. Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China

2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

A 5G system is an advanced solution for industrial wireless motion control. However, because the scheduling model of 5G new radio (NR) is more complicated than those of other wireless networks, existing real-time scheduling algorithms cannot be used to improve the 5G performance. This results in NR resources not being fully available for industrial systems. Supervised learning has been widely used to solve complicated problems, and its advantages have been demonstrated in multiprocessor scheduling. One of the main reasons why supervised learning has not been used for 5G NR scheduling is the lack of training datasets. Therefore, in this paper, we propose two methods based on optimization modulo theories (OMT) and satisfiability modulo theories (SMT) to generate training datasets for 5G NR scheduling. Our OMT-based method contains fewer variables than existing work so that the Z3 solver can find optimal solutions quickly. To further reduce the solution time, we transform the OMT-based method into an SMT-based method and tighten the search space of SMT based on three theorems and an algorithm. Finally, we evaluate the solution time of our proposed methods and use the generated dataset to train a supervised learning model to solve the 5G NR scheduling problem. The evaluation results indicate that our SMT-based method reduces the solution time by 74.7% compared to existing ones, and the supervised learning algorithm achieves better scheduling performance than other polynomial-time algorithms.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Science and Technology Program of Liaoning Province

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference28 articles.

1. Development of digital, intelligent and networked manufacturing for batch customized flexible production;Shan;Chin. J. Internet Things,2021

2. Research status and prospect of industrial edge computing;Wang;Inf. Control,2021

3. 5G Ultra-Reliable Low-Latency Communications in Factory Automation Leveraging Licensed and Unlicensed Bands;Hampel;IEEE Commun. Mag.,2019

4. Real-Time Wireless Sensor-Actuator Networks for Industrial Cyber-Physical Systems;Lu;Proc. IEEE,2016

5. Adaptive 5G Low-Latency Communication for Tactile InternEt Services;Sachs;Proc. IEEE,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3