Origins of Genetic Coding: Self-Guided Molecular Self-Organisation

Author:

Wills Peter R.1ORCID

Affiliation:

1. Department of Physics, University of Auckland, Auckland PB 92019, New Zealand

Abstract

The origin of genetic coding is characterised as an event of cosmic significance in which quantum mechanical causation was transcended by constructive computation. Computational causation entered the physico-chemical processes of the pre-biotic world by the incidental satisfaction of a condition of reflexivity between polymer sequence information and system elements able to facilitate their own production through translation of that information. This event, which has previously been modelled in the dynamics of Gene–Replication–Translation systems, is properly described as a process of self-guided self-organisation. The spontaneous emergence of a primordial genetic code between two-letter alphabets of nucleotide triplets and amino acids is easily possible, starting with random peptide synthesis that is RNA-sequence-dependent. The evident self-organising mechanism is the simultaneous quasi-species bifurcation of the populations of information-carrying genes and enzymes with aminoacyl-tRNA synthetase-like activities. This mechanism allowed the code to evolve very rapidly to the ~20 amino acid limit apparent for the reflexive differentiation of amino acid properties using protein catalysts. The self-organisation of semantics in this domain of physical chemistry conferred on emergent molecular biology exquisite computational control over the nanoscopic events needed for its self-construction.

Funder

Alfred P. Sloan Foundation

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference57 articles.

1. Warrington, J., and Translator, J.M. (1963). The Trial and Death of Socrates, Dent and Sons Ltd.. Everyman’s Library.

2. Evolutionary self-organization of cell-free genetic coding;McCaskill;Proc. Natl Acad. Sci. USA,2001

3. Self-organisation of matter and the evolution of biological macromolecules;Eigen;Naturwissenschaften,1971

4. Molecular quasi-species;Eigen;J. Phys. Chem.,1988

5. Agency in evolution of biomolecular communication;Ann. N. Y. Acad. Sci.,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3