Abstract
This paper systematically presents the λ-deformation as the canonical framework of deformation to the dually flat (Hessian) geometry, which has been well established in information geometry. We show that, based on deforming the Legendre duality, all objects in the Hessian case have their correspondence in the λ-deformed case: λ-convexity, λ-conjugation, λ-biorthogonality, λ-logarithmic divergence, λ-exponential and λ-mixture families, etc. In particular, λ-deformation unifies Tsallis and Rényi deformations by relating them to two manifestations of an identical λ-exponential family, under subtractive or divisive probability normalization, respectively. Unlike the different Hessian geometries of the exponential and mixture families, the λ-exponential family, in turn, coincides with the λ-mixture family after a change of random variables. The resulting statistical manifolds, while still carrying a dualistic structure, replace the Hessian metric and a pair of dually flat conjugate affine connections with a conformal Hessian metric and a pair of projectively flat connections carrying constant (nonzero) curvature. Thus, λ-deformation is a canonical framework in generalizing the well-known dually flat Hessian structure of information geometry.
Funder
United States Air Force Office of Scientific Research
Subject
General Physics and Astronomy
Reference42 articles.
1. Methods of Information Geometry;Amari,2000
2. Information geometry and sufficient statistics
3. From Hessian to Weitzenböck: manifolds with torsion-carrying connections
4. Statistical mirror symmetry
5. Estimators, escort probabilities, and ϕ-exponential families in statistical physics;Naudts;J. Inequal. Pure Appl. Math.,2004
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献