Sublimation Study of Six 5-Substituted-1,10-Phenanthrolines by Knudsen Effusion Mass Loss and Solution Calorimetry

Author:

Brunetti Bruno,Ciccioli Andrea,Lapi AndreaORCID,Buzyurov Aleksey V.,Nagrimanov Ruslan N.,Varfolomeev Mikhail A.ORCID,Ciprioti Stefano VecchioORCID

Abstract

The vapor pressures of six solid 5-X-1,10-phenanthrolines (where X = Cl, CH3, CN, OCH3, NH2, NO2) were determined in suitable temperature ranges by Knudsen Effusion Mass Loss (KEML). From the temperature dependencies of vapor pressure, the molar sublimation enthalpies, ΔcrgHm0(⟨T⟩), were calculated at the corresponding average ⟨T⟩ of the explored temperature ranges. Since to the best of our knowledge no thermochemical data seem to be available in the literature regarding these compounds, the ΔcrgHm0(⟨T⟩) values obtained by KEML experiments were adjusted to 298.15 K using a well known empirical procedure reported in the literature. The standard (p0 = 0.1 MPa) molar sublimation enthalpies, ΔcrgHm0(298.15 K), were compared with those determined using a recently proposed solution calorimetry approach, which was validated using a remarkable amount of thermochemical data of molecular compounds. For this purpose, solution enthalpies at infinite dilution of the studied 5-chloro and 5-methylphenantrolines in benzene were measured at 298.15 K. Good agreement was found between the values derived by the two different approaches, and final mean values of ΔcrgHm0(298.15 K) were recommended. Finally, the standard molar entropies and Gibbs energies of sublimation were also derived at T = 298.15 K. The volatilities of the six compounds were found to vary over a range of three orders of magnitude in the explored temperature range. The large difference in volatility was analyzed in the light of enthalpies and entropies of sublimation. The latter was tentatively put in relation to the rotational contribution of the substituent group on the phenanthroline unit.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3