Rainfall-Runoff Modelling Using Hydrological Connectivity Index and Artificial Neural Network Approach

Author:

Asadi Haniyeh,Shahedi Kaka,Jarihani Ben,Sidle Roy

Abstract

The input selection process for data-driven rainfall-runoff models is critical because input vectors determine the structure of the model and, hence, can influence model results. Here, hydro-geomorphic and biophysical time series inputs, including Normalized Difference Vegetation Index (NDVI) and Index of Connectivity (IC; a type of hydrological connectivity index), in addition to climatic and hydrologic inputs were assessed. Selected inputs were used to develop Artificial Neural Networks (ANNs) in the Haughton River catchment and the Calliope River catchment, Queensland, Australia. Results show that incorporating IC as a hydro-geomorphic parameter and remote sensing NDVI as a biophysical parameter, together with rainfall and runoff as hydro-climatic parameters, can improve ANN model performance compared to ANN models using only hydro-climatic parameters. Comparisons amongst different input patterns showed that IC inputs can contribute to further improvement in model performance, than NDVI inputs. Overall, ANN model simulations showed that using IC along with hydro-climatic inputs noticeably improved model performance in both catchments, especially in the Calliope catchment. This improvement is indicated by a slight increase (9.77% and 11.25%) in the Nash–Sutcliffe efficiency and noticeable decrease (24.43% and 37.89%) in the root mean squared error of monthly runoff from Haughton River and Calliope River, respectively. Here, we demonstrate the significant effect of hydro-geomorphic and biophysical time series inputs for estimating monthly runoff using ANN data-driven models, which are valuable for water resources planning and management.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3