Full Waveform Prediction of Blasting Vibration Using Deep Learning

Author:

Wang Yunsen,Zheng Guiping,Li Yuanhui,Zhang Fengpeng

Abstract

Blasting vibration could cause dynamic instability of rock masses within a critical steady state. To control the blasting vibration, it is necessary to understand the complete dynamic response process of the rock masses under the blasting vibration. The Long Short-Term Memory (LSTM) technique uses blast monitoring data to predict the full waveform of the blast vibration. Based on the LSTM, a new full waveform prediction model is proposed in this study. To verify the feasibility of the proposed model, the sample data were constructed using the well-known linear blast wave superposition prediction formula. The full waveform prediction model is trained and the predicted waveform and the actual waveform are then evaluated and compared. The loss function is calculated and discussed, which verifies the feasibility of the prediction method. In addition to the numerical research, the actual blasting vibration data are also used for verification. The parameters, such as sequence size, training algorithm, and some hidden layer nodes, are discussed and optimized. The results show that the proposed full waveform prediction model based on LSTM can predict the full blasting waveform. This study provides a new idea for the prediction and control of blasting vibration.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3