Mechanical Performance of Amorphous Metallic Fiber-Reinforced and Rubberized Thin Bonded Cement-Based Overlays

Author:

Javed Ayesha,Gillani Syed Asad Ali,Abbass Wasim,Riaz Muhammad Rizwan,Hameed Rashid,Abbas SafeerORCID,Salmi Abdelatif,Deifalla Ahmed FaroukORCID

Abstract

To improve the flexural behavior of thin bonded cement-based overlays, this study was carried out on the use of repair material incorporating amorphous metallic fibers (AMFs) in combination with the rubber aggregates obtained from grinding of worn-out tires. For this study, sixteen mortar mix compositions were prepared to contain AMFs and/or rubber aggregates to be used as overlay material while the substrate used was plain cement mortar. Rubber aggregates were incorporated at three different replacement ratios (i.e., 10%, 20% and 30%) by an equivalent volume of sand, and AMFs were added in three different dosages (i.e., 10 kg/m3, 20 kg/m3 and 30 kg/m3). In this study, composite beams (500 × 100 × 140 mm) comprising substrate (500 × 100 × 100 mm) and repair layer (500 × 100 × 40 mm) were prepared and investigated under flexural loading. Experimental results showed that the increase in rubber content resulted in a decrease compressive strength, flexural strength and modulus of elasticity. Rubberized fiber-reinforced cementitious composites (30R30F) exhibited higher flexural toughness and the flexural toughness improved up to 400%. Toughness and maximum deflection of composite beams enhanced significantly due to synergetic effect of AMF and rubber aggregates. It was observed that before peak load, rubber plays its role by delaying the micro-crack propagation. Results also revealed that the steel fibers reinforcement plays an important role in restraining the crack openings under flexure loading. In the post-peak region, steel fibers control the cracks from propagating further by bridging action and provide higher post-peak residual strength.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference47 articles.

1. Concrete. Structure, Properties and Materials;Mehta,1986

2. Bonded Cement-Based Material Overlays for the Repair, the Lining or the Strengthening of Slabs or Pavements: State-of-the-Art Report of the RILEM Technical Committee 193-RLS;Bissonnette,2011

3. Thin Bonded Overlays About the Role of Fiber Reinforcement on the Limitation of Their Debonding

4. Experimental and numerical investigation of the debonding interface between an old concrete and an overlay

5. Mechanical properties of steel fibre reinforced and rubberised cement-based mortars

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3