Root Water Uptake Patterns for Nitraria during the Growth Period Differing in Time Interval from a Precipitation Event in Arid Regions

Author:

Dong Haibiao,Hao Jing,Chen Zongyu,Zhang Guanghui,Yan Mingjiang,Wang Jinzhe

Abstract

Vegetation root water uptake is one of the most central water transport processes along the soil-vegetation-atmosphere interface particularly in (semi-)arid ecosystems. The identification and quantification of root activities and water uptake patterns of arid vegetation remain challenging. This paper aims at the quantitative examination of water uptake behaviors of Nitraria, a prevalent desert species in arid environments, during the growth phase via a multivariate linear mixed model based on water stable isotopes, with a main focus on the time interval from a precipitation pulse. The observations indicate that the precipitation events exert periodic significant pulse-effects on vegetation water uptake through direct absorption (contribution of almost 75%) and activation of deep root activity at a certain depth. While in most occasions without rainfall, Nitraria relies on its extremely extensive shallow roots in surface-near lateral zone (contribution of about 60%) to extract massive soil as well as the hydraulic lifting mechanism to survive drought. Achievements would be beneficial to enhancing the understanding of entangled water transport processes and eco-hydrological feedbacks along soil-vegetation interface in arid ecosystems and contribute to a scientific allocation to water resources with the consideration of ecological protection.

Funder

China Geological Survey

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3