Combining Deep Learning and Multi-Source GIS Methods to Analyze Urban and Greening Changes

Author:

Francini Mauro1,Salvo Carolina1ORCID,Vitale Alessandro1ORCID

Affiliation:

1. Department of Civil Engineering, University of Calabria, 87036 Rende, CS, Italy

Abstract

Although many authors have observed a degradation in greening cover alongside an increase in the built-up areas, resulting in a deterioration of the essential environmental services for the well-being of ecosystems and society, few studies have measured how greening developed in its full spatiotemporal configuration with urban development using innovative remote sensing (RS) technologies. Focusing on this issue, the authors propose an innovative methodology for the analysis of the urban and greening changes over time by integrating deep learning (DL) technologies to classify and segment the built-up area and the vegetation cover from satellite and aerial images and geographic information system (GIS) techniques. The core of the methodology is a trained and validated U-Net model, which was tested on an urban area in the municipality of Matera (Italy), analyzing the urban and greening changes from 2000 to 2020. The results demonstrate a very good level of accuracy of the U-Net model, a remarkable increment in the built-up area density (8.28%) and a decline in the vegetation cover density (5.13%). The obtained results demonstrate how the proposed method can be used to rapidly and accurately identify useful information about urban and greening spatiotemporal development using innovative RS technologies supporting sustainable development processes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference71 articles.

1. UN (United Nations) (2015). The 2030 Agenda for Sustainable Development, United Nations.

2. Three challenges for the compact city as a sustainable urban form: Household consumption of energy and transport in eight residential areas in the greater Oslo Region;Holden;Urban Stud.,2005

3. Jenks, M., and Burgess, R. (2000). Compact Cities: Sustainable Urban Forms for Developing Countries, Spon Press.

4. Expressions of the compact city paradigm in peri-urban planning across European city regions–how do planners deal with sustainability trade-offs;Westerink;Eur. Plan. Stud.,2012

5. Elmqvist, T., Bai, X., Frantzeskaki, N., Griffith, C., Maddox, D., McPhearson, T., Parnell, S., Romero-Lankao, P., Simon, D., and Watkins, M. (2018). The Urban Planet: Knowledge towards Sustainable Cities, Cambridge University Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3