Gait-CNN-ViT: Multi-Model Gait Recognition with Convolutional Neural Networks and Vision Transformer

Author:

Mogan Jashila Nair1ORCID,Lee Chin Poo1ORCID,Lim Kian Ming1ORCID,Ali Mohammed2ORCID,Alqahtani Ali23ORCID

Affiliation:

1. Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia

2. Department of Computer Science, King Khalid University, Abha 61421, Saudi Arabia

3. Center for Artificial Intelligence (CAI), King Khalid University, Abha 61421, Saudi Arabia

Abstract

Gait recognition, the task of identifying an individual based on their unique walking style, can be difficult because walking styles can be influenced by external factors such as clothing, viewing angle, and carrying conditions. To address these challenges, this paper proposes a multi-model gait recognition system that integrates Convolutional Neural Networks (CNNs) and Vision Transformer. The first step in the process is to obtain a gait energy image, which is achieved by applying an averaging technique to a gait cycle. The gait energy image is then fed into three different models, DenseNet-201, VGG-16, and a Vision Transformer. These models are pre-trained and fine-tuned to encode the salient gait features that are specific to an individual’s walking style. Each model provides prediction scores for the classes based on the encoded features, and these scores are then summed and averaged to produce the final class label. The performance of this multi-model gait recognition system was evaluated on three datasets, CASIA-B, OU-ISIR dataset D, and OU-ISIR Large Population dataset. The experimental results showed substantial improvement compared to existing methods on all three datasets. The integration of CNNs and ViT allows the system to learn both the pre-defined and distinct features, providing a robust solution for gait recognition even under the influence of covariates.

Funder

Fundamental Research Grant Scheme of the Ministry of Higher Education

Deanship of Scientific Research, King Khalid University, Saudi Arabia

Multimedia University Internal Research Grant

Yayasan Universiti Multimedia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3