Microplastic Toxicity and Trophic Transfer in Freshwater Organisms: Ecotoxicological and Genotoxic Assessment in Spirodela polyrhiza (L.) Schleid. and Echinogammarus veneris (Heller, 1865) Treated with Polyethylene Microparticles

Author:

Iannilli Valentina1ORCID,Passatore Laura2,Carloni Serena2,Lecce Francesca1,Sciacca Giulia1,Zacchini Massimo2ORCID,Pietrini Fabrizio2ORCID

Affiliation:

1. ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development C.R. Casaccia, Via Anguillarese, 301, 00123 Roma, Italy

2. Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Salaria km 29.300, Monterotondo Scalo, 00015 Roma, Italy

Abstract

The widespread occurrence of microplastics (MPs) has resulted in their interaction with biological processes. Thus, there is a great concern about the potential toxicity of MPs on animal and plant cells and on the possibility that MPs reach humans through the food web. In order to shed light on both issues, laboratory assays were performed for evaluating the effects of polyethylene (PE) microparticles on the aquatic plant Spirodela polyrhiza (L.) Schleid. and the gammarid Echinogammarus veneris (Heller, 1865). Moreover, a stock of MP-treated Spirodela plants was used to feed gammarid individuals, and the presence of MP particles in their digestive tracts was analyzed. Results evidenced the lack of toxic effects of MPs on plants, evaluated at growth and physiological level by biometric parameters, pigment content, and photosynthetic performance estimated by chlorophyll fluorescence imaging through the ETPT (EcoTox Photosystem Tool). Only a slight reduction in pigment-related indices in MP-treated plants was observed. A remarkable genotoxic effect was instead highlighted by Comet assay in the hemocytes of gammarid individuals exposed to MPs, with three times more DNA damage (expressed as Tail Moment) in MP-treated individuals compared to control ones. Finally, the gut content of the gammarids fed with MP-treated plants revealed the presence of 7.6 MP particles/individual, highlighting the occurrence of trophic transfer of MPs among freshwater ecosystem organisms. Novel indications about the potential impact of the PE microparticles in the aquatic compartment are provided. Notably, the transfer of MP particles between primary producer and primary consumer organisms of the freshwater trophic chain and the genotoxic effects associated with the ingestion of such particles by gammarids are issues of concern for the aquatic ecosystem and the food web leading to the human diet.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3