Quantitative Flood Risk Assessment in Drammenselva River, Norway

Author:

Hailemariam Seble Fissha1ORCID,Alfredsen Knut1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, 7031 Trondheim, Norway

Abstract

Floods are frequent natural hazards, triggering significant negative consequences for the economy every year. Their impact is expected to increase in the near future due to socio-economic development and climate change. In order to minimize the probability and magnitude of expected economic losses and compensation costs, it is essential that flood risk managers are properly informed about potential damage related to hazard features and exposure. In this paper, a flood damage estimation method was proposed for the assessment of flood risk in the Drammen River basin by using a hydraulic model, GIS, and a flood loss estimation model. Hazard variables such as flood depth, flood extent, and flood velocity were computed for the current and future climatic scenarios using the hydraulic model for flood damage assessment. To visualize the flood extent, velocity, depth, and their impact, the results of modelling are illustrated in the form of flood inundation maps produced in GIS. A flood loss estimate included buildings and other infrastructure that are major exposures in flood-prone areas. The flood damage model is formulated based on stage–damage relationships between different flood depths and land-use categories. It calculates the economic loss related to different land-use features based on the simulated flood parameter obtained from the hydraulic model from 100- to 1000-year return periods. For the case study, the results show that the highest proportion of the total damage in each repetition interval (approximately 90–92%) is expected to occur in buildings. In addition, results showed that the effects of climate change will raise the total damage from floods by 20.26%.

Funder

NORAD scholarship

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3