Impacts of Climate Change on Natural Runoff in the Yellow River Basin of China during 1961–2020

Author:

Han Zuoqiang12,Zuo Qiting13ORCID,Wang Chunqing2,Gan Rong1

Affiliation:

1. School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Hydrology Bureau, Yellow River Conservancy Commission, Zhengzhou 450004, China

3. Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China

Abstract

The change in natural runoff is highly relevant to total river flow dispatch and water resource utilization in the Yellow River Basin (YRB). Based on the annual mean temperature and total precipitation records from 70 meteorological stations from 1961–2020, the impact of climate change on the natural runoff of the YRB is investigated using the Mann-Kendall (M-K) test and Bivariate Wavelet analysis methods. Results show that the annual mean temperature over the YRB increased by 0.33 °C decade−1 during 1961–2020, with a warming rate of more than 0.40 °C decade−1 observed in its northern part. The annual total precipitation increases by 10–20 mm decade−1 in the northwest YRB, while it decreases by 20–30 mm decade−1 in the southeast YRB. The result of the M-K test shows abrupt variations in temperature and natural runoff, especially in the 1980s and 1990s. The decrease in natural runoff is closely tied to the increase (decrease) in temperature (precipitation), especially for the period 1993–2020. The bivariate wavelet coherence analysis further suggests that the decrease in the natural runoff, which has persisted over the past 60 years, is primarily driven by precipitation reduction rather than regional warming. In the stage of rapid warming, the inter-decadal influence of precipitation on natural runoff gradually changes to the influence of inter-annual fluctuation. The finding contributes to providing an important scientific basis for evaluating the optimal allocation of water resources in arid and semi-arid areas against the background of climate change.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3