A Systematic Methodology to Evaluate Prediction Models for Driving Style Classification

Author:

Silva Iván,Eugenio Naranjo JoséORCID

Abstract

Identifying driving styles using classification models with in-vehicle data can provide automated feedback to drivers on their driving behavior, particularly if they are driving safely. Although several classification models have been developed for this purpose, there is no consensus on which classifier performs better at identifying driving styles. Therefore, more research is needed to evaluate classification models by comparing performance metrics. In this paper, a data-driven machine-learning methodology for classifying driving styles is introduced. This methodology is grounded in well-established machine-learning (ML) methods and literature related to driving-styles research. The methodology is illustrated through a study involving data collected from 50 drivers from two different cities in a naturalistic setting. Five features were extracted from the raw data. Fifteen experts were involved in the data labeling to derive the ground truth of the dataset. The dataset fed five different models (Support Vector Machines (SVM), Artificial Neural Networks (ANN), fuzzy logic, k-Nearest Neighbor (kNN), and Random Forests (RF)). These models were evaluated in terms of a set of performance metrics and statistical tests. The experimental results from performance metrics showed that SVM outperformed the other four models, achieving an average accuracy of 0.96, F1-Score of 0.9595, Area Under the Curve (AUC) of 0.9730, and Kappa of 0.9375. In addition, Wilcoxon tests indicated that ANN predicts differently to the other four models. These promising results demonstrate that the proposed methodology may support researchers in making informed decisions about which ML model performs better for driving-styles classification.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference79 articles.

1. Behavioral correlates of individual differences in road-traffic crash risk: An examination of methods and findings.

2. Global Status Report on Road Safety 2015,2015

3. Traffic Safety Culture Index;Arnold,2017

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Makine Öğrenmesi Tekniklerinin Sürüş Stili Sınıflandırmasında Kullanımı;Black Sea Journal of Engineering and Science;2024-07-15

2. Driving Style Recognition Method Based on Risk Field and Masked Learning Techniques;Mathematics;2024-04-30

3. Aggressive Driver Behavior Detection Using Multi-Label Classification;2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM);2024-01-03

4. Graph-based Driving Style Recognition from Electrophysiological Analysis during Car Following;2023 3rd International Conference on Digital Society and Intelligent Systems (DSInS);2023-11-10

5. A Review of Driving Style Recognition Methods From Short-Term and Long-Term Perspectives;IEEE Transactions on Intelligent Vehicles;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3