Machine Learning Predictions of Transition Probabilities in Atomic Spectra

Author:

Michalenko Joshua J.ORCID,Murzyn Christopher M.,Zollweg Joshua D.,Wermer Lydia,Van Omen Alan J.,Clemenson Michael D.

Abstract

Forward modeling of optical spectra with absolute radiometric intensities requires knowledge of the individual transition probabilities for every transition in the spectrum. In many cases, these transition probabilities, or Einstein A-coefficients, quickly become practically impossible to obtain through either theoretical or experimental methods. Complicated electronic orbitals with higher order effects will reduce the accuracy of theoretical models. Experimental measurements can be prohibitively expensive and are rarely comprehensive due to physical constraints and sheer volume of required measurements. Due to these limitations, spectral predictions for many element transitions are not attainable. In this work, we investigate the efficacy of using machine learning models, specifically fully connected neural networks (FCNN), to predict Einstein A-coefficients using data from the NIST Atomic Spectra Database. For simple elements where closed form quantum calculations are possible, the data-driven modeling workflow performs well but can still have lower precision than theoretical calculations. For more complicated nuclei, deep learning emerged more comparable to theoretical predictions, such as Hartree–Fock. Unlike experiment or theory, the deep learning approach scales favorably with the number of transitions in a spectrum, especially if the transition probabilities are distributed across a wide range of values. It is also capable of being trained on both theoretical and experimental values simultaneously. In addition, the model performance improves when training on multiple elements prior to testing. The scalability of the machine learning approach makes it a potentially promising technique for estimating transition probabilities in previously inaccessible regions of the spectral and thermal domains on a significantly reduced timeline.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3