Abstract
Fast, miniature temperature sensors are required for various biomedical applications. Fibre-optics are particularly suited to minimally invasive procedures, and many types of fibre-optic temperature sensors have been demonstrated. In applications where rapidly varying temperatures are present, a fast and well-known response time is important; however, in many cases, the dynamic behaviour of the sensor is not well-known. In this article, we investigate the dynamic response of a polymer-based interferometric temperature sensor, using both an experimental technique employing optical heating with a pulsed laser, and a computational heat transfer model based on the finite element method. Our results show that the sensor has a time constant on the order of milliseconds and a −6 dB bandwidth of up to 178 Hz, indicating its suitability for applications such as flow measurement by thermal techniques, photothermal spectroscopy, and monitoring of thermal treatments.
Funder
Engineering and Physical Sciences Research Council
Wellcome Trust
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献