Temporal Evolution and Regional Properties of Aerosol over the South China Sea

Author:

Chen JieORCID,Zhu WenyueORCID,Liu Qiang,Qian Xianmei,Chen Xiaowei,Zheng Jianjie,Yang Tao,Xu Qiuyi,Yang Tengfei

Abstract

Aerosol robotic network (AERONET) data from Dongsha Island (20.699N, 116.729E) and Taiping Island (35.90N, 3.03W) over the South China Sea (SCS) from January 2018 to December 2020 were used to analyze and discuss the temporal evolution properties of aerosols in the South China Sea. Surrounding AERONET stations (Hong Kong, NSPO, Nha Trang and Singapore) were also used to analyze regional characteristics. High aerosol loads over Dongsha were strongly associated with the anthropogenic fine particle transport from the southeastern coast of China and occasional advection of desert dust from Mongolian areas. The high fine aerosol loading in Taiping originates from the region between Singapore and Indonesia. Compared with other marine islands in the world, SCS was not a pure marine aerosol environment and was affected by terrestrial aerosols. In the Taiping area, aerosol optical depth τ (500 nm) was 0.17 ± 0.13 and the average Ångström exponent α (440–870 nm) was 0.96 ± 0.36. However, that of Dongsha shows the larger values of τ (0.26 ± 0.21) and α (1.1 ± 0.38), indicating that there are large fluctuations in aerosol concentration and size. Aerosol loads in different regions of the SCS due to uneven socioeconomic and complex meteorological systems, such as those of the coastal cities of China, Singapore, and the region between Singapore and Indonesia, contribute to the high optical depth. The special meteorological regime and aerosol source mechanism in the SCS leads to the obvious seasonal cycle of aerosol optical depth and Ångström index. Moreover, the loading variations of aerosols on Dongsha Island and Taiping Island were highly consistent with those of coastal cities around them, suggesting the significant effect of the aerosol in the SCS by the surrounding coastal cities, although the aerosol optical depth in these two places was much lower than that in the surrounding cities.

Funder

National Natural Science Foundation of China

Foundation of Advanced Laser Technology Laboratory of Anhui Province

Key Program in the Youth Talent Support Plan in Universities of Anhui Province

Strategic Priority Research Program of Chinese Academy of Sciences

Key Laboratory of Science and Technology Innovation of Chinese Academy of Sciences

Open Research Fund of Key Laboratory of Atmospheric Optics, Chinese Academy of Sciences

President’s Fund of Hefei Institutes of Physical Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3