A New Drought Monitoring Index on the Tibetan Plateau Based on Multisource Data and Machine Learning Methods

Author:

Cheng Meilin,Zhong LeiORCID,Ma Yaoming,Wang Xian,Li Peizhen,Wang Zixin,Qi Yuting

Abstract

Drought is a major disaster over the Tibetan Plateau (TP) that exerts great impacts on natural ecosystems and agricultural production. Furthermore, most drought indices are only useful for assessing drought conditions on a coarse temporal scale. Drought indices that describe drought evolution at a fine temporal scale are still scarce. In this study, four machine learning methods, including random forest regression (RFR), k-nearest neighbor regression (KNNR), support vector regression (SVR), and extreme gradient boosting regression (XGBR), were used to construct daily drought indices based on multisource remote sensing and reanalysis data. Through comparison with in situ soil moisture (SM) over the TP, our results indicate that the drought index based on the XGBR model outperforms other models (R2 = 0.76, RMSE = 0.11, MAE = 0.08), followed by RFR (R2 = 0.74, RMSE = 0.11, MAE = 0.08), KNNR (R2 = 0.73, RMSE = 0.11, MAE = 0.08) and SVR (R2 = 0.66, RMSE = 0.12, MAE = 0.1). A new daily drought index, the standardized integrated drought index (SIDI), was developed by the XGBR model for monitoring agricultural drought. A comparison with ERA5-Land SM and widely used indices such as SPI-6 and SPEI-6 indicated that the SIDI depicted the dry and wet change characteristics of the plateau well. Furthermore, the SIDI was applied to analyze a typical drought event and reasonably characterize the spatiotemporal patterns of drought evolution, demonstrating its capability and superiority for drought monitoring over the TP. In addition, soil properties accounted for 59.5% of the model output, followed by meteorological conditions (35.8%) and topographic environment (4.7%).

Funder

National Natural Science Foundation of China

the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program, Ministry of Science and Technology of the People’s Republic of China

CLIMATE-Pan-TPE in the framework of the ESA-MOST Dragon 5 Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3