A Finite Element Analysis of the Effects of Graphene and Carbon Nanotubes on Thermal Conductivity of Co Phase in WC–Co Carbide

Author:

Li Zhengwu,Xiao Wenkai,Ruan Xuefeng

Abstract

In engineering practice, the service life of cemented carbide shield tunneling machines in uneven soft and hard strata will be seriously reduced due to thermal stress. When carbon nanotubes (CNTs) and graphene nano-platelets (GNPs) are added to WC–Co carbide as enhanced phases, the thermal conductivity of carbide is significantly improved. Research should be performed to further understand the mechanism of enhancement in composites and to find ways to assist the design and optimization of the structure. In this paper, a series of finite element models were established using scripts to find the factors that affect the thermal conduction, including positions, orientations, interface thermal conductivity, shapes, sizes, and so on. WC–Co carbide with CNTs (0.06%, 0.12%, and 0.18% vol.), GNPs (0.06%, 0.12%, and 0.18% vol.) and hybrid CNTs–GNPs (1:1) were prepared to verify the reliability of finite element simulation results. The results show that the larger the interface thermal conductivity, the higher the composite phase thermal conductivity. Each 1%vol of CNTs increased the thermal conductivity of the composite phase by 7.2%, and each 1% vol. of GNPs increased the thermal conductivity of the composite phase by 5.2%. The proper curvature (around 140°) of CNTs and GNPs with a proper diameter to thickness ratio is suggested to lead to better thermal conductivity.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3