Abstract
An economically efficient yet safe design of concrete structures under high-cycle fatigue loading is a rather complex task. One of the main reasons is the insufficient understanding of the fatigue damage phenomenology of concrete. A promising hypothesis states that the evolution of fatigue damage in concrete at subcritical load levels is governed by a cumulative measure of shear sliding. To evaluate this hypothesis, an experimental program was developed which systematically investigates the fatigue behavior of high-strength concrete under mode II loading using newly adapted punch through shear tests (PTST). This paper presents the results of monotonic, cyclic, and fatigue shear tests and discusses the effect of shear-compression-interaction and load level with regard to displacement and damage evolution, fracture behavior, and fatigue life. Both, monotonic shear strength and fatigue life under mode II loading strongly depend on the concurrent confinement (compressive) stress in the ligament. However, it appears that the fatigue life is more sensitive to a variation of shear stress range than to a variation of compressive stress in the ligament.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献