Abstract
The main objective was to determine the deleterious potential of quartzite mining tailings subjected to different ASR alkali–silica reaction tests. The studies included petrographic analysis, chemical analysis of cements, expansion tests in mortar bars and concrete prisms, and microstructural analysis. Petrographic analysis of quartzites indicated high percentages of deformed quartz (95%), and were classified as potentially reactive. Two types of HES high early strength cement with alkaline equivalents of 0.749% and 0.61%, respectively, were selected. Of the 8 samples analyzed by the accelerated method in mortars, only 2 quartzite samples and 1 diabasium sample indicated potentially reactive behavior. The accelerated and long-term methods in concrete prisms proved to be effective and were consistent with the deleterious potential of the samples. All analyzed samples were diagnosed with the ASR gel. In the microstructural analysis, in addition to the ASR products, other expansive products of late ettringite were detected. Reaction mitigation methods are proposed so that quartzite waste can be used as an alternative aggregate in concrete, and thus contribute to the reduction of mine tailings and, consequently, reduce the negative environmental impact from mining.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献