An Unsupervised Method for Industrial Image Anomaly Detection with Vision Transformer-Based Autoencoder

Author:

Yang Qiying1,Guo Rongzuo1

Affiliation:

1. College of Computer Science, Sichuan Normal University, Chengdu 610101, China

Abstract

Existing industrial image anomaly detection techniques predominantly utilize codecs based on convolutional neural networks (CNNs). However, traditional convolutional autoencoders are limited to local features, struggling to assimilate global feature information. CNNs’ generalizability enables the reconstruction of certain anomalous regions. This is particularly evident when normal and abnormal regions, despite having similar pixel values, contain different semantic information, leading to ineffective anomaly detection. Furthermore, collecting abnormal image samples during actual industrial production poses challenges, often resulting in data imbalance. To mitigate these issues, this study proposes an unsupervised anomaly detection model employing the Vision Transformer (ViT) architecture, incorporating a Transformer structure to understand the global context between image blocks, thereby extracting a superior representation of feature information. It integrates a memory module to catalog normal sample features, both to counteract anomaly reconstruction issues and bolster feature representation, and additionally introduces a coordinate attention (CA) mechanism to intensify focus on image features at both spatial and channel dimensions, minimizing feature information loss and thereby enabling more precise anomaly identification and localization. Experiments conducted on two public datasets, MVTec AD and BeanTech AD, substantiate the method’s effectiveness, demonstrating an approximate 20% improvement in average AUROC% at the image level over traditional convolutional encoders.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference45 articles.

1. Deep learning for anomaly detection: A review;Pang;ACM Comput. Surv. (CSUR),2021

2. Visual anomaly detection for images: A systematic survey;Yang;Procedia Comput. Sci.,2022

3. Chen, W.J., Ho, J.H., Mustapha, K.B., and Chai, T.Y. (2019, January 7–9). A vision based system for anomaly detection and classification in additive manufacturing. Proceedings of the 2019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET), Penang, Malaysia.

4. A template matching based monochrome fabric defect detection algorithm;Zhou;Meas. Control Technol.,2021

5. A review of deep learning methods for industrial defect detection;Luo;Sci. China Inf. Sci.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3