Hazard-Consistent Earthquake Scenario Selection for Seismic Slope Stability Assessment

Author:

Konovalov AlexeyORCID,Gensiorovskiy Yuriy,Stepnov Andrey

Abstract

Design ground shaking intensity, based on probabilistic seismic hazard analysis (PSHA) maps, is most commonly used as a triggering condition to analyze slope stability under seismic loading. Uncertainties that are associated with expected ground motion levels are often ignored. This study considers an improved, fully probabilistic approach for earthquake scenario selection. The given method suggests the determination of the occurrence probability of various ground motion levels and the probability of landsliding for these ground motion parameters, giving the total probability of slope failure under seismic loading in a certain time interval. The occurrence hazard deaggregation technique is proposed for the selection of the ground shaking level, as well as the magnitude and source-to-site distance of a design earthquake, as these factors most probably trigger slope failure within the time interval of interest. An example application of the approach is provided for a slope near the highway in the south of Sakhalin Island (Russia). The total probability of earthquake-induced slope failure in the next 50 years was computed to be in the order of 16%. The scenario peak ground acceleration value estimated from the disaggregated earthquake-induced landslide hazard is 0.15g, while the 475-year seismic hazard curve predicts 0.3g. The case study highlights the significant difference between ground shaking scenario levels in terms of the 475-year seismic hazard map and the considered fully probabilistic approach.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3