Effect of Soil Microbiome from Church Forest in the Northwest Ethiopian Highlands on the Growth of Olea europaea and Albizia gummifera Seedlings under Glasshouse Conditions

Author:

Abebe Getu,Tsunekawa AtsushiORCID,Haregeweyn NigussieORCID,Taniguchi Takeshi,Wondie MenaleORCID,Adgo EnyewORCID,Masunaga Tsugiyuki,Tsubo Mitsuru,Ebabu Kindiye,Mamedov Amrakh,Meshesha Derege Tsegaye

Abstract

Loss of beneficial microbes and lack of native inoculum have hindered reforestation efforts in the severely-degraded lands worldwide. This is a particularly pressing problem for Ethiopia owing to centuries-old unsustainable agricultural practices. This study aimed to evaluate the inoculum potential of soils from church forest in the northwest highlands of Ethiopia and its effect on seedling growth of two selected native tree species (Olea europaea and Albizia gummifera) under a glasshouse environment. Seedlings germinated in a seed chamber were transplanted into pots containing sterilized and/or non-sterilized soils collected from under the canopy of three dominant church forest trees: Albizia gummifera (AG), Croton macrostachyus (CM), and Juniperus procera (JP) as well as from adjacent degraded land (DL). A total of 128 pots (2 plant species × 4 soil origins × 2 soil treatments × 8 replicates) were arranged in a factorial design. Overall, seedlings grown in AG, CM, and JP soils showed a higher plant performance and survival rate, as a result of higher soil microbial abundance and diversity, than those grown in DL soils. The results showed significantly higher plant height, root collar diameter, shoot, and total mass for seedlings grown in non-sterilized forest soils than those grown in sterilized soils. Furthermore, the bacterial relative abundance of Acidobacteria, Actinobacteria, and Nitrospirae was significantly higher in the non-sterilized forest soils AG, CM, and JP (r2 = 0.6–0.8, p < 0.001). Soil pH had a strong effect on abundance of the bacterial community in the church forest soils. More specifically, this study further demonstrated that the effect of soil microbiome was noticeable on the performance of Olea seedlings grown in the soil from CM. This suggests that the soils from remnant church forests, particularly from the canopy under CM, can serve as a good soil origin, which possibly would promote the native tree seedling growth and survival in degraded lands.

Funder

Science and Technology Research Partnership for Sustainable Development

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3