Responses of Concrete Using Steel Slag as Coarse Aggregate Replacement under Splitting and Flexure

Author:

Nguyen Thi-Thuy-Hang,Mai Hong-Ha,Phan Duc-Hung,Nguyen Duy-LiemORCID

Abstract

Experimental tests were performed to investigate the responses of coarse steel slag concrete under splitting and flexure. The name of coarse steel slag concrete (CSC) here refers to concrete using industrial byproduct steel slag as natural coarse aggregate replacement. Three CSC types were examined in this investigation as follows: CSC1, CSC2, and CSC3, having a water/cement ratio of 0.57, 0.50, and 0.45, respectively. In the compositions of the three studied CSCs, the water content by weight remained constant and other partial materials were changed, but the ratio of coarse steel slag/fine river sand was still fixed. Under splitting, three types of test methods were conducted including a cylinder splitting test, side-cube splitting test, and diagonal-cube splitting with the same sizes: the diameter of the cylinder and side of the cube were 100 mm. The orders of splitting test methods were observed for CSC2 as follows: cylinder > side-cube > diagonal-cube in terms of maximum applied load, and, cylinder > diagonal-cube > side-cube in terms of splitting strength. Additionally, there were clear size effects on the splitting strengths of CSC2 with different sizes as follows: 70 mm, 100 mm, 150 mm for cylindrical diameter, and/or cubic side. Under flexure, there was a strong co-relationship between compressive strength and flexural resistance of CSCs. The flexural engineering parameters were examined then assessed for plain CSCs, using a rectangular prism with the size of 100 × 100 × 300 mm (width × height × span-length), and, for steel-reinforced beams using CSCs with the size of 200 × 300 × 3000 mm (width × height × span-length).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3