Applicability of Kinematic Wave Model for Flood Routing under Unsteady Inflow

Author:

Zheng Hanwu,Huang Er,Luo Ming

Abstract

This study implemented kinematic wave and dynamic wave approximation of flood routing for a prismatic rectangular channel. The results of the two methods were compared by differences in maximum flow depth, and the applicability of kinematic wave equation was discussed. The influences of hydraulic and geometrical factors on the applicability of kinematic wave equation were considered. It was found that a portion of the numerical results violated existing criteria used to indicate the applicability of kinematic wave equation, particularly when geometrical and hydraulic factors were considered together. This is because the characteristics of upstream inflow were rarely or incompletely considered in these criteria. Therefore, the present study proposed a new criterion. The theoretical influence of all factors was considered using three parameters, namely, KF02, ηts/T0′ and Qbottom/Qpeak (K, F0, ηts, T0′, Qbottom, and Qpeak represent the kinematic wave number, Froude number, the time span of discharge exceeding 90% of maximum discharge in hydrograph, wave travel time in the channel, base flow discharge, and peak discharge, respectively, while the subscript 0 represent the value of reference discharge). The influences of these three parameters were illustrated by the momentum equation of one-dimensional Saint-Venant equation. The numerical results showed that the value of ηts/T0′ (KF02)D could be used to determine the relative error ξh of kinematic wave equation. In addition, for each Qbottom/Qpeak the value of ηts/T0′ (KF02)D used to depict the same relative error ξh was different. This new criterion was validated using two real case studies, and it showed a good performance.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3