Isinglass Polysaccharides Regulate Intestinal-Barrier Function and Alleviate Obesity in High-Fat Diet Mice through the HO-1/Nrf2 Pathway and Intestinal Microbiome Environment

Author:

Li Guopeng,Li Shugang,Liu Huanhuan,Zhang Lihua,Gao Jingzhu,Zhang Siteng,Zou Yue,Xia XiaodongORCID,Ren XiaomengORCID

Abstract

Plant polysaccharide intervention has shown significant potential to combat obesity. However, studies on animal polysaccharides are indeed rare. The aim of this study was to investigate the potential functions of CIP (IL) on obesity, intestinal microflora dysbiosis, and the possible protection of intestinal barrier in mice fed with high-fat diet (HFD). Our results revealed that after 13 weeks, the HFD+L (high-fat diet + 25 mg/kg CIP) group showed significantly more weight loss and fat accumulation relative to the HFD+H (high-fat diet + 50 mg/kg CIP) group. Furthermore, CIP intervention modulated lipid metabolism and mRNA levels of inflammatory mediators in liver. Overall, CIP clearly improved the intestinal barrier in HFD-fed mice. Additionally, we observed that CIP intervention improved intestinal microbiota community richness and diversity in HFD-fed mice. The CIP intervention mice group showed a relatively low Firmicutes to Bacteroidetes ratio compared to the HFD group. This study concluded that CIP could be used as a functional food to prevent adipocyte accumulation, reduce systemic inflammation, and protect the intestinal barrier.

Funder

Department of Science and Technology of Liaoning Province

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3