Simulation of a Solar-Assisted Air-Conditioning System Applied to a Remote School

Author:

Aguilar-Jiménez Jesús ArmandoORCID,Velázquez Nicolás,López-Zavala Ricardo,González-Uribe Luis A.ORCID,Beltrán RicardoORCID,Hernández-Callejo LuisORCID

Abstract

In this work, we present an absorption cooling system with 35 kW capacity driven by solar thermal energy, installed in the school of Puertecitos, Mexico, an off-grid community with a high level of social marginalization. The cooling system provides thermal comfort to the school’s classrooms through four 8.75-kW cooling coils, while a 110-m2 field of evacuated tube solar collectors delivers the thermal energy needed to activate the cooling machine. The characteristics of the equipment installed in the school were used for simulation and operative analysis of the system under the influence of typical factors of an isolated coastal community, such as the influence of climate, thermal load, and water consumption in the cooling tower, among others. The aim of this simulation study was to determine the best operating conditions prior to system start-up, to establish the requirements for external heating and cooling services, and to quantify the freshwater requirements for the proper functioning of the system. The results show that, with the simulated strategies implemented, with a maximum load operation, the system can maintain thermal comfort in the classrooms for five days of classes. This is feasible as long as weekends are dedicated to raising the water temperature in the thermal storage tank. As the total capacity of the system is distributed in the four cooling coils, it is possible to control the cooling demand in order to extend the operation periods. Utilizing 75% or less of the cooling capacity, the system can operate continuously, taking advantage of stored energy. The cooling tower requires about 750 kg of water per day, which becomes critical given the scarcity of this resource in the community.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3