LCF: A Local Context Focus Mechanism for Aspect-Based Sentiment Classification

Author:

Zeng BiqingORCID,Yang HengORCID,Xu Ruyang,Zhou Wu,Han XuliORCID

Abstract

Aspect-based sentiment classification (ABSC) aims to predict sentiment polarities of different aspects within sentences or documents. Many previous studies have been conducted to solve this problem, but previous works fail to notice the correlation between the aspect’s sentiment polarity and the local context. In this paper, a Local Context Focus (LCF) mechanism is proposed for aspect-based sentiment classification based on Multi-head Self-Attention (MHSA). This mechanism is called LCF design, and utilizes the Context features Dynamic Mask (CDM) and Context Features Dynamic Weighted (CDW) layers to pay more attention to the local context words. Moreover, a BERT-shared layer is adopted to LCF design to capture internal long-term dependencies of local context and global context. Experiments are conducted on three common ABSC datasets: the laptop and restaurant datasets of SemEval-2014 and the ACL twitter dataset. Experimental results demonstrate that the LCF baseline model achieves considerable performance. In addition, we conduct ablation experiments to prove the significance and effectiveness of LCF design. Especially, by incorporating with BERT-shared layer, the LCF-BERT model refreshes state-of-the-art performance on all three benchmark datasets.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3