Speech Enhancement Using Generative Adversarial Network by Distilling Knowledge from Statistical Method

Author:

Wu Jianfeng,Hua Yongzhu,Yang Shengying,Qin Hongshuai,Qin Huibin

Abstract

This paper presents a new deep neural network (DNN)-based speech enhancement algorithm by integrating the distilled knowledge from the traditional statistical-based method. Unlike the other DNN-based methods, which usually train many different models on the same data and then average their predictions, or use a large number of noise types to enlarge the simulated noisy speech, the proposed method does not train a whole ensemble of models and does not require a mass of simulated noisy speech. It first trains a discriminator network and a generator network simultaneously using the adversarial learning method. Then, the discriminator network and generator network are re-trained by distilling knowledge from the statistical method, which is inspired by the knowledge distillation in a neural network. Finally, the generator network is fine-tuned using real noisy speech. Experiments on CHiME4 data sets demonstrate that the proposed method achieves a more robust performance than the compared DNN-based method in terms of perceptual speech quality.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of deep learning techniques for speech processing;Information Fusion;2023-11

2. A comprehensive review of generative adversarial networks: Fundamentals, applications, and challenges;WIREs Computational Statistics;2023-08-02

3. Comparing Classifiers for Recognizing the Emotions by extracting the Spectral Features of Speech Using Machine Learning;2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT);2023-03-17

4. ERIL: An Algorithm for Emotion Recognition from Indian Languages Using Machine Learning;Wireless Personal Communications;2022-09-12

5. BERIS: An mBERT-based Emotion Recognition Algorithm from Indian Speech;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3