Author:
Wu Jianfeng,Hua Yongzhu,Yang Shengying,Qin Hongshuai,Qin Huibin
Abstract
This paper presents a new deep neural network (DNN)-based speech enhancement algorithm by integrating the distilled knowledge from the traditional statistical-based method. Unlike the other DNN-based methods, which usually train many different models on the same data and then average their predictions, or use a large number of noise types to enlarge the simulated noisy speech, the proposed method does not train a whole ensemble of models and does not require a mass of simulated noisy speech. It first trains a discriminator network and a generator network simultaneously using the adversarial learning method. Then, the discriminator network and generator network are re-trained by distilling knowledge from the statistical method, which is inspired by the knowledge distillation in a neural network. Finally, the generator network is fine-tuned using real noisy speech. Experiments on CHiME4 data sets demonstrate that the proposed method achieves a more robust performance than the compared DNN-based method in terms of perceptual speech quality.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献