Abstract
This work aimed to investigate whether automated classifiers belonging to feature-based and deep learning may approach brain metastases segmentation successfully. Support Vector Machine and V-Net Convolutional Neural Network are selected as representatives of the two approaches. In the experiments, we consider several configurations of the two methods to segment brain metastases on contrast-enhanced T1-weighted magnetic resonance images. Performances were evaluated and compared under critical conditions imposed by the clinical radiotherapy domain, using in-house dataset and public dataset created for the Multimodal Brain Tumour Image Segmentation (BraTS) challenge. Our results showed that the feature-based and the deep network approaches are promising for the segmentation of Magnetic Resonance Imaging (MRI) brain metastases achieving both an acceptable level of performance. Experimental results also highlight different behaviour between the two methods. Support vector machine (SVM) improves performance with a smaller training set, but it is unable to manage a high level of heterogeneity in the data and requires post-processing refinement stages. The V-Net model shows good performances when trained on multiple heterogeneous cases but requires data augmentations and transfer learning procedures to optimise its behaviour. The paper illustrates a software package implementing an integrated set of procedures for active support in segmenting brain metastases within the radiotherapy workflow.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献