Investigating the Behaviour of Machine Learning Techniques to Segment Brain Metastases in Radiation Therapy Planning

Author:

Gonella GloriaORCID,Binaghi Elisabetta,Nocera PaolaORCID,Mordacchini Cinzia

Abstract

This work aimed to investigate whether automated classifiers belonging to feature-based and deep learning may approach brain metastases segmentation successfully. Support Vector Machine and V-Net Convolutional Neural Network are selected as representatives of the two approaches. In the experiments, we consider several configurations of the two methods to segment brain metastases on contrast-enhanced T1-weighted magnetic resonance images. Performances were evaluated and compared under critical conditions imposed by the clinical radiotherapy domain, using in-house dataset and public dataset created for the Multimodal Brain Tumour Image Segmentation (BraTS) challenge. Our results showed that the feature-based and the deep network approaches are promising for the segmentation of Magnetic Resonance Imaging (MRI) brain metastases achieving both an acceptable level of performance. Experimental results also highlight different behaviour between the two methods. Support vector machine (SVM) improves performance with a smaller training set, but it is unable to manage a high level of heterogeneity in the data and requires post-processing refinement stages. The V-Net model shows good performances when trained on multiple heterogeneous cases but requires data augmentations and transfer learning procedures to optimise its behaviour. The paper illustrates a software package implementing an integrated set of procedures for active support in segmenting brain metastases within the radiotherapy workflow.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3