SOLIOT—Decentralized Data Control and Interactions for IoT

Author:

Bader Sebastian R.ORCID,Maleshkova MariaORCID

Abstract

The digital revolution affects every aspect of society and economy. In particular, the manufacturing industry faces a new age of production processes and connected collaboration. The underlying ideas and concepts, often also framed as a new “Internet of Things”, transfer IT technologies to the shop floor, entailing major challenges regarding the heterogeneity of the domain. On the other hand, web technologies have already proven their value in distributed settings. SOLID (derived from “social linked data”) is a recent approach to decentralize data control and standardize interactions for social applications in the web. Extending this approach towards industrial applications has the potential to bridge the gap between the World Wide Web and local manufacturing environments. This paper proposes SOLIOT—a combination of lightweight industrial protocols with the integration and data control provided by SOLID. An in-depth requirement analysis examines the potential but also current limitations of the approach. The conceptual capabilities are outlined, compared and extended for the IoT protocols CoAP and MQTT. The feasibility of the approach is illustrated through an open-source implementation, which is evaluated in a virtual test bed and a detailed analysis of the proposed components.

Funder

European Commission

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference55 articles.

1. Solid: A Platform for Decentralized Social Applications Based on Linked Data;Sambra,2017

2. A common core for information modeling in the Industrial Internet of Things

3. MQTT Version 5.0; OASIS Committee Specification 02https://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html

4. The Constrained Application Protocol (CoAP). RFC 7252https://tools.ietf.org/html/rfc6347

5. Digital twin-driven product design, manufacturing and service with big data

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3