Update on the Utility of Optical Coherence Tomography in the Analysis of the Optic Nerve Head in Highly Myopic Eyes with and without Glaucoma

Author:

Kudsieh Bachar12,Fernández-Vigo José Ignacio23ORCID,Flores-Moreno Ignacio1,Ruiz-Medrano Jorge14,Garcia-Zamora Maria1ORCID,Samaan Muhsen5,Ruiz-Moreno Jose Maria14ORCID

Affiliation:

1. Department of Ophthalmology, University Hospital Puerta De Hierro Majadahonda, 28220 Madrid, Spain

2. Centro Internacional de Oftalmologia Avanzada, 28010 Madrid, Spain

3. Department of Ophthalmology, Hospital Clinico San Carlos, Institute of Health Research (IdISSC), 28040 Madrid, Spain

4. Instituto de Microcirugia Ocular (IMO), 28035 Madrid, Spain

5. Barraquer Eye Clinic UAE, Dubai P.O. Box 212619, United Arab Emirates

Abstract

Glaucoma diagnosis in highly myopic subjects by optic nerve head (ONH) imaging is challenging as it is difficult to distinguish structural defects related to glaucoma from myopia-related defects in these subjects. Optical coherence tomography (OCT) has evolved to become a routine examination at present, providing key information in the assessment of glaucoma based on the study of the ONH. However, the correct segmentation and interpretation of the ONH data employing OCT is still a challenge in highly myopic patients. High-resolution OCT images can help qualitatively and quantitatively describe the structural characteristics and anatomical changes in highly myopic subjects with and without glaucoma. The ONH and peripapillary area can be analyzed to measure the myopic atrophic-related zone, the existence of intrachoroidal cavitation, staphyloma, and ONH pits by OCT. Similarly, the lamina cribosa observed in the OCT images may reveal anatomical changes that justify visual defects. Several quantitative parameters of the ONH obtained from OCT images were proposed to predict the progression of visual defects in glaucoma subjects. Additionally, OCT images help identify factors that may negatively influence the measurement of the retinal nerve fiber layer (RNFL) and provide better analysis using new parameters, such as Bruch’s Membrane Opening-Minimum Rim Width, which serves as an alternative to RNFL measurements in highly myopic subjects due to its superior diagnostic ability.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3