Defining the Age of Young Ischemic Stroke Using Data-Driven Approaches

Author:

Abedi Vida12ORCID,Lambert Clare3ORCID,Chaudhary Durgesh45,Rieder Emily6,Avula Venkatesh1ORCID,Hwang Wenke2ORCID,Li Jiang1ORCID,Zand Ramin45ORCID

Affiliation:

1. Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA

2. Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA

3. Department of Neurology, Yale New Haven Hospital, New Haven, CT 06510, USA

4. Geisinger Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA

5. Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA

6. Geisinger Commonwealth, School of Medicine, Scranton, PA 18509, USA

Abstract

Introduction: The cut-point for defining the age of young ischemic stroke (IS) is clinically and epidemiologically important, yet it is arbitrary and differs across studies. In this study, we leveraged electronic health records (EHRs) and data science techniques to estimate an optimal cut-point for defining the age of young IS. Methods: Patient-level EHRs were extracted from 13 hospitals in Pennsylvania, and used in two parallel approaches. The first approach included ICD9/10, from IS patients to group comorbidities, and computed similarity scores between every patient pair. We determined the optimal age of young IS by analyzing the trend of patient similarity with respect to their clinical profile for different ages of index IS. The second approach used the IS cohort and control (without IS), and built three sets of machine-learning models—generalized linear regression (GLM), random forest (RF), and XGBoost (XGB)—to classify patients for seventeen age groups. After extracting feature importance from the models, we determined the optimal age of young IS by analyzing the pattern of comorbidity with respect to the age of index IS. Both approaches were completed separately for male and female patients. Results: The stroke cohort contained 7555 ISs, and the control included 31,067 patients. In the first approach, the optimal age of young stroke was 53.7 and 51.0 years in female and male patients, respectively. In the second approach, we created 102 models, based on three algorithms, 17 age brackets, and two sexes. The optimal age was 53 (GLM), 52 (RF), and 54 (XGB) for female, and 52 (GLM and RF) and 53 (RF) for male patients. Different age and sex groups exhibited different comorbidity patterns. Discussion: Using a data-driven approach, we determined the age of young stroke to be 54 years for women and 52 years for men in our mainly rural population, in central Pennsylvania. Future validation studies should include more diverse populations.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3