Molecular and Aggregate Structural, Thermal, Mechanical and Photophysical Properties of Long-Chain Amide Gelators Containing an α-Diketo Group in the Presence or Absence of a Tertiary Amine Group

Author:

Grover Girishma,Brothers Andrea Blake,Weiss Richard G.

Abstract

Three structurally related gelators, each containing octadecyl chains, an α-diketo group at the 9,10 positions, and each with a different N-amide group—isobutyl (DIBA), isopentyl (DIPA) or N-(2-(dimethylamino)ethyl) (DMEA)—have been synthesized. Their neat structures as well as the thermal mechanical, and photophysical properties in their gel states with various liquids have been investigated. The gelator networks of DIBA and DIPA in octane, hexylbenzene and silicone oil consist of bundles of fibers. These gels are partially thixotropic and mechanically, thermally (to above their melting or silicone oil gelation temperatures), and photophysically stable. They are mechanically and thermally stronger than the gels formed with DMEA, the gelator with a tertiary amine group. The lone pair of electrons of the tertiary amine group leads to an intra-molecular or inter-molecular charge-transfer interaction, depending on whether the sample is a solution, sol, or gel. Neat, solid DMEA does not undergo the charge-transfer process because its amino and diketo groups are separated spatially by a large distance in the crystalline state and cannot diffuse into proximity. However, the solution of DIPA upon the addition of triethylamine becomes unstable over time at room temperature in the dark or (more rapidly) when irradiated, which initiates the aforementioned charge-transfer processes. The eventual reaction of the gelators in the presence of a tertiary amine group is ascribed to electron transfer from the lone-pair on nitrogen to an α-diketo group, followed by proton transfer to an oxygen atom on the anion radical of the α-diketo group from a methyl or methylene group attached to the nitrogen atom of the cation radical. Finally, the formation of an α-diketyl radical leads to irreversible electronic and structural changes that are observed over time.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3