Abstract
Covalently crosslinked sodium carboxymethyl cellulose (CMC)–hydroxyethyl cellulose (HEC) hydrogel films were prepared using citric acid (CA) as the crosslinking agent. Thereafter, the physically crosslinked κ-carrageenan (κ-CG) polymer was introduced into the CMC–HEC hydrogel structure, yielding κ-CG/CMC–HEC double network (DN) hydrogels. The κ-CG physical network provided sacrificial bonding, which effectively dissipated the stretching energy, resulting in an increase in the tensile modulus, tensile strength, and fracture energy of the DN hydrogels by 459%, 305%, and 398%, respectively, compared with those of the CMC–HEC single network (SN) hydrogel. The dried hydrogels exhibited excellent water absorbency with a maximum water-absorption capacity of 66 g/g in distilled water. Compared with the dried covalent SN gel, the dried DN hydrogels exhibited enhanced absorbency under load, attributed to their improved mechanical properties. The water-absorption capacities and kinetics were dependent on the size of the dried gel and the pH of the water.
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献