Microbial Community, Metabolic Potential and Seasonality of Endosphere Microbiota Associated with Leaves of the Bioenergy Tree Paulownia elongata × fortunei

Author:

Woźniak MałgorzataORCID,Gałązka AnnaORCID,Marzec-Grządziel AnnaORCID,Frąc MagdalenaORCID

Abstract

The microbial structure and metabolic function of plant-associated endophytes play a key role in the ecology of various environments, including trees. Here, the structure and functional profiles of the endophytic bacterial community, associated with Paulownia elongata × fortunei, in correlation with seasonality, were evaluated using Biolog EcoPlates. Biolog EcoPlates was used to analyse the functional diversity of the microbiome. The total communities of leaf endophyte communities were investigated using 16S rRNA V5–V7 region amplicon deep sequencing via Illumina MiSeq. Community level physiological profiling (CLPP) analysis by the Biolog EcoPlate™ assay revealed that the carboxylic acids (19.67–36.18%) and amino acids (23.95–35.66%) were preferred by all by all communities, whereas amines and amides (0.38–9.46%) were least used. Seasonal differences in substrate use were also found. Based on the sequencing data, mainly phyla Proteobacteria (18.4–97.1%) and Actinobacteria (2.29–78.7%) were identified. A core microbiome could be found in leaf-associated endophytic communities in trees growing in different locations. This work demonstrates the application of Biolog EcoPlates in studies of the functional diversity of microbial communities in a niche other than soil and shows how it can be applied to the functional analyses of endomicrobiomes. This research can contribute to the popularisation of Biolog EcoPlates for the functional analysis of the endomicrobiome. This study confirms that the analysis of the structure and function of the plant endophytic microbiome plays a key role in the health control and the development of management strategies on bioenergy tree plantations.

Funder

National Science Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3