Aspiletrein A Induces Apoptosis Cell Death via Increasing Reactive Oxygen Species Generation and AMPK Activation in Non-Small-Cell Lung Cancer Cells

Author:

Witayateeraporn Wasita,Nguyen Hien Minh,Ho Duc VietORCID,Nguyen Hoai Thi,Chanvorachote Pithi,Vinayanuwattikun Chanida,Pongrakhananon VarisaORCID

Abstract

Lung cancer remains a leading cause of death in cancer patients, and deregulation of apoptosis is a serious concern in clinical practice, even though therapeutic intervention has been greatly improved. Plants are a versatile source of biologically active compounds for anticancer drug discovery, and aspiletrein A (AA) is a steroidal saponin isolated from Aspidistra letreae that has a potent cytotoxic effect on various cancer cell lines. In this study, we investigated and determined the underlying molecular mechanism by which AA induces apoptosis. AA strongly induced apoptosis in NSCLC cells by mediating ROS generation and thereby activating AMP-activated protein kinase (AMPK) signaling. Consequently, downstream signaling and levels of phosphorylated mTOR and Bcl-2 were significantly decreased. Pretreatment with either an antioxidant, N-acetylcysteine, or an AMPK inhibitor, compound C, could reverse the apoptosis-inducing effect and counteract the effect of AA on the AMPK signaling pathway. Decreased levels of Bcl-2 were due to AA-mediating Bcl-2 degradation via a ROS/AMPK/mTOR axis-dependent proteasomal mechanism. Consistently, the apoptotic-inducing effect of AA was also observed in patient-derived malignant lung cancer cells, and it suppressed an in vitro 3D-tumorigenesis. This study identified the underlying mechanism of AA on lung cancer apoptosis, thereby facilitating potential research and development of this compound for further clinical implications.

Funder

Ratchadaphiset endowment Fund, Chulalongkorn University, Thailand

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3