Fast Tacrolimus Metabolism Does Not Promote Post-Transplant Diabetes Mellitus after Kidney Transplantation

Author:

Jehn UlrichORCID,Wiedmer Nathalie,Boeckel Göran Ramin,Pavenstädt Hermann,Thölking GeroldORCID,Reuter Stefan

Abstract

Post-transplant diabetes mellitus (PTDM) after kidney transplantation induced by tacrolimus is an important issue. Fast tacrolimus metabolism, which can be estimated by concentration-to-dose (C/D) ratio, is associated with increased nephrotoxicity and unfavorable outcomes after kidney transplantation. Herein, we elucidate whether fast tacrolimus metabolism also increases the risk for PTDM. Data from 596 non-diabetic patients treated with tacrolimus-based immunosuppression at the time of kidney transplantation between 2007 and 2015 were retrospectively analyzed. The median follow-up time after kidney transplantation was 4.7 years (IQR 4.2 years). Our analysis was complemented by experimental modeling of fast and slow tacrolimus metabolism kinetics in cultured insulin-producing pancreatic cells (INS-1 cells). During the follow-up period, 117 (19.6%) patients developed PTDM. Of all patients, 210 (35.2%) were classified as fast metabolizers (C/D ratio < 1.05 ng/mL × 1/mg). Fast tacrolimus metabolizers did not have a higher incidence of PTDM than slow tacrolimus metabolizers (p = 0.496). Consistent with this, insulin secretion and the viability of tacrolimus-treated INS-1 cells exposed to 12 h of tacrolimus concentrations analogous to the serum profiles of fast or slow tacrolimus metabolizers or to continuous exposure did not differ (p = 0.286). In conclusion, fast tacrolimus metabolism is not associated with increased incidence of PTDM after kidney transplantation, either in vitro or in vivo. A short period of incubation of INS-1 cells with tacrolimus using different concentration profiles led to comparable effects on cell viability and insulin secretion in vitro. Consistent with this, in our patient, collective fast Tac metabolizers did not show a higher PTDM incidence compared to slow metabolizers.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3