Feature Selection and Molecular Classification of Cancer Phenotypes: A Comparative Study

Author:

Zanella Luca,Facco PierantonioORCID,Bezzo FabrizioORCID,Cimetta ElisaORCID

Abstract

The classification of high dimensional gene expression data is key to the development of effective diagnostic and prognostic tools. Feature selection involves finding the best subset with the highest power in predicting class labels. Here, we conducted a comparative study focused on different combinations of feature selectors (Chi-Squared, mRMR, Relief-F, and Genetic Algorithms) and classification learning algorithms (Random Forests, PLS-DA, SVM, Regularized Logistic/Multinomial Regression, and kNN) to identify those with the best predictive capacity. The performance of each combination is evaluated through an empirical study on three benchmark cancer-related microarray datasets. Our results first suggest that the quality of the data relevant to the target classes is key for the successful classification of cancer phenotypes. We also proved that, for a given classification learning algorithm and dataset, all filters have a similar performance. Interestingly, filters achieve comparable or even better results with respect to the GA-based wrappers, while also being easier and faster to implement. Taken together, our findings suggest that simple, well-established feature selectors in combination with optimized classifiers guarantee good performances, with no need for complicated and computationally demanding methodologies.

Funder

European Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Feature Selection in Microarray Data Analysis Using Deep Learning;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

2. Survey of the loss function in classification models: Comparative study in healthcare and medicine;Multimedia Tools and Applications;2024-06-05

3. Influence of cost/loss functions on classification rate: A comparative study across diverse classifiers and domains;Engineering Applications of Artificial Intelligence;2024-02

4. Optimized Prognostic Models for Oral Cancer Survival using Feature Selection Methods;Procedia Computer Science;2024

5. Feature Engineering with Microarray Gene Expression Techniques for Asymptomatic Disease Classification;2023 1st DMIHER International Conference on Artificial Intelligence in Education and Industry 4.0 (IDICAIEI);2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3