Differences in Diurnal Rhythm of Rod Outer Segment Renewal between 129T2/SvEmsJ and C57BL/6J Mice

Author:

Vargas Jade A.,Finnemann Silvia C.ORCID

Abstract

In all mammalian species tested to date, rod photoreceptor outer segment renewal is a circadian process synchronized by light with a burst of outer segment fragment (POS) shedding and POS phagocytosis by the adjacent retinal pigment epithelium (RPE) every morning at light onset. Recent reports show that RPE phagocytosis also increases shortly after dark onset in C57BL/6 (C57) mice. Genetic differences between C57 mice and 129T2/SvEmsJ (129) mice may affect regulation of outer segment renewal. Here, we used quantitative methods to directly compare outer segment renewal in C57 and 129 mouse retina. Quantification of rhodopsin-positive phagosomes in the RPE showed that in 129 mice, rod POS phagocytosis after light onset was significantly increased compared to C57 mice, but that 129 mice did not show a second peak after dark onset. Cone POS phagosome content of RPE cells did not differ by mouse strain with higher phagosome numbers after light than after dark. We further quantified externalization of the “eat me” signal phosphatidylserine by outer segment tips, which precedes POS phagocytosis. Live imaging of retina ex vivo showed that rod outer segments extended PS exposure in both strains but that frequency of outer segments with exposed PS after light onset was lower in C57 than in 129 retina. Taken together, 129 mice lacked a burst of rod outer segment renewal after dark onset. The increases in rod outer segment renewal after light and after dark onset in C57 mice were attenuated compared to the peak after light onset in 129 mice, suggesting an impairment in rhythmicity in C57 mice.

Funder

National Eye Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3