Association of Antihypertensive Effects of Esaxerenone with the Internal Sodium Balance in Dahl Salt-Sensitive Hypertensive Rats

Author:

Hattori Mai,Rahman AsadurORCID,Kidoguchi Satoshi,Jahan Nourin,Fujisawa Yoshihide,Morisawa Norihiko,Ohsaki HiroyukiORCID,Kobara HidekiORCID,Masaki Tsutomu,Hossain AkramORCID,Steeve Akumwami,Nishiyama AkiraORCID

Abstract

Background: The nonsteroidal mineralocorticoid receptor blocker esaxerenone is effective in reducing blood pressure (BP). Objective: In this study, we investigated esaxerenone-driven sodium homeostasis and its association with changes in BP in Dahl salt-sensitive (DSS) hypertensive rats. Methods: In the different experimental setups, we evaluated BP by a radiotelemetry system, and sodium homeostasis was determined by an approach of sodium intake (food intake) and excretion (urinary excretion) in DSS rats with a low-salt diet (0.3% NaCl), high-salt diet (HSD, 8% NaCl), HSD plus 0.001% esaxerenone (w/w), and HSD plus 0.05% furosemide. Results: HSD-fed DSS rats showed a dramatic increase in BP with a non-dipper pattern, while esaxerenone treatment, but not furosemide, significantly reduced BP with a dipper pattern. The cumulative sodium excretion in the active period was significantly elevated in esaxerenone- and furosemide-treated rats compared with their HSD-fed counterparts. Sodium content in the skin, skinned carcass, and total body tended to be lower in esaxerenone-treated rats than in their HSD-fed counterparts, while these values were unchanged in furosemide-treated rats. Consistently, sodium balance tended to be reduced in esaxerenone-treated rats during the active period. Histological evaluation showed that esaxerenone, but not furosemide, treatment attenuated glomerulosclerosis, tubulointerstitial fibrosis, and urinary protein excretion induced by high salt loading. Conclusions: Collectively, these findings suggest that an esaxerenone treatment-induced reduction in BP and renoprotection are associated with body sodium homeostasis in salt-loaded DSS rats.

Funder

Daiichi Sankyo

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Renin-Angiotensin-Aldosterone System in Metabolic Diseases and Other Pathologies;International Journal of Molecular Sciences;2023-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3