Hepatocyte Growth Factor Enhances Antineoplastic Effect of 5-Fluorouracil by Increasing UPP1 Expression in HepG2 Cells

Author:

Okumura Manabu,Iwakiri Tomomi,Yoshikawa NaokiORCID,Nagatomo Takao,Ayabe Takanori,Tsuneyoshi Isao,Ikeda Ryuji

Abstract

Aberrant activation of hepatocyte growth factor (HGF) and its receptor c-Met axis promotes tumor growth. Therefore, many clinical trials have been conducted. A phase 3 trial investigating a monoclonal antibody targeting HGF in combination with fluoropyrimidine-based chemotherapy had to be terminated prematurely; however, the reason behind the failure remains poorly defined. In this study, we investigated the influence of HGF on the antineoplastic effects of 5-fluorouracil (5-FU), a fluoropyrimidine, in HepG2 cells. HGF suppressed the proliferative activity of cells concomitantly treated with 5-FU more robustly as compared to that of cells treated with 5-FU alone, and markedly increased the expression of uridine phosphorylase 1 (UPP1). Intracellular concentration of 5-fluorouridine, an initial anabolite of 5-FU catalyzed by UPP1, was increased by HGF. Interestingly, erlotinib enhanced HGF-induced increase in UPP1 mRNA; in contrast, gefitinib suppressed it. Furthermore, erlotinib suppressed HGF-increased phosphorylation of the epidermal growth factor receptor at the Tyr1173 site involved in downregulation of extracellular signal-regulated kinase (Erk) activation, and enhanced the HGF-increased phosphorylation of Erk. Collectively, these findings suggest that inhibition of the HGF/c-Met axis diminishes the effects of fluoropyrimidine through downregulation of UPP1 expression. Therefore, extreme caution must be exercised in terms of patient safety while offering chemotherapy comprising fluoropyrimidine concomitantly with inhibitors of the HGF/c-Met axis.

Funder

Miyazaki University Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3