Thermodynamic Swings: How Ideal Complex of Cas9–RNA/DNA Forms

Author:

Zhdanova Polina V.,Lomzov Alexander A.ORCID,Prokhorova Daria V.,Stepanov Grigory A.ORCID,Chernonosov Alexander A.ORCID,Koval Vladimir V.ORCID

Abstract

Most processes of the recognition and formation of specific complexes in living systems begin with collisions in solutions or quasi-solutions. Then, the thermodynamic regulation of complex formation and fine tuning of complexes come into play. Precise regulation is very important in all cellular processes, including genome editing using the CRISPR–Cas9 tool. The Cas9 endonuclease is an essential component of the CRISPR–Cas-based genome editing systems. The attainment of high-specificity and -efficiency Cas9 during targeted DNA cleavage is the main problem that limits the practical application of the CRISPR–Cas9 system. In this study, we analyzed the thermodynamics of interaction of a complex’s components of Cas9–RNA/DNA through experimental and computer simulation methods. We found that there is a small energetic preference during Cas9–RNA/DNA formation from the Cas9–RNA and DNA/DNA duplex. The small difference in binding energy is relevant for biological interactions and could be part of the sequence-specific recognition of double-stranded DNA by the CRISPR–Cas9 system.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3